Investigating aminoglycoside susceptibility in *Acinetobacter baumannii* and its relationship to oxidative stress

Shoshana Cook-Libin, Ellen Sykes, Vanessa Kornelsen, Ayush Kumar
Department of Microbiology, University of Manitoba

Introduction

Acinetobacter baumannii is a Gram-negative opportunistic pathogen that is one of the major causes of hospital-acquired infections in the current healthcare system (Moubareck and Halat 2020).

- *A. baumannii* is associated with high mortality due to many strains achieving multidrug resistance (Moubareck and Halat 2020).
- Previous work demonstrated that deletion of catalase genes *katE* and *katG* in *A. baumannii* increased the cells’ resistance to aminoglycoside antibiotics; an increase in expression of the adeAB RND efflux pump was observed simultaneously (Kainth 2021).
- Gene knockout experiments deleting *katE*, *katG*, and *adeAB* genes in *A. baumannii* may help confirm a causal relationship between catalase gene deletion and adeAB efflux pump expression increase.
- Deletions were completed using either electroporation or conjugation methods to incorporate the non-replicative pMO31 plasmid backbone into the *A. baumannii* genome.
- The pMO31 plasmid is prepared by SOEing PCR and maintained in *E. coli* strains grown on LB plates containing gentamicin.
- Investigation of the effects of these deletions on aminoglycoside antibiotic susceptibility of *A. baumannii* strains was performed using minimum inhibitory concentration (MIC) tests.

Objectives

- To generate *A. baumannii* strains with various combinations of *katE*, *katG*, and *adeAB* gene deletions.
- To use MIC tests to compare aminoglycoside antibiotic susceptibilities between *A. baumannii* strains.

Implications

- Confirming a causal relationship between catalase gene deletion and adeAB efflux pump expression increase may help to elucidate some of the mechanisms of antibiotic resistance in *A. baumannii*.
- This information may be applicable to the goal of creating new treatments for this dangerous pathogen.

Methods

- **Gene deletion protocol** for *Acinetobacter baumannii* strains.

Results

- Obtained 3 potential deletion strains that grew consistently on gentamicin but not kanamycin plates during the second crosspatch but was not able to screen these strains yet due to ineffective PCR primers.
- Completed MIC tests for ATCC17978 (wild type), AB155 (*katG*), AB188 (*katE*), and AB189 (*adeAB*, *katE*) strains in the presence of kanamycin in one condition and in the presence of kanamycin + 5mM Ascorbic acid (thought to remove reactive oxygen species) in the second condition.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Strain</th>
<th>MIC with Kan</th>
<th>MIC with Kan + Ascorbic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATCC17978</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AB188 (katE)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ATCC17978</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AB188 (katE)</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ATCC17978</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AB155 (katG)</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AB189 (adeAB;</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>katG)</td>
<td>0.5</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>ATCC17978</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AB155 (adeAB;</td>
<td>1024</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>katG)</td>
<td>1024</td>
<td>1</td>
</tr>
</tbody>
</table>

Conclusion

- Potential deletion strains with ATCC17978Δ*adeABkatG*, ATCC17978Δ*adeABkatE*, and ATCC17978Δ*adeABkatEv* genotypes generated.
- MIC results for ATCC17978 in the presence of kanamycin and ascorbic acid led to an unexpected increase in MIC that may be explained by hypotheses in the literature.
- RT-qPCR experiment designed to test some of these hypotheses and explore how ascorbic acid affects gene expression.

Future Work

- Complete the generation of strains with various combinations of the described genes deleted.
- Successfully screen these strains to confirm knockouts using PCR and gel electrophoresis.
- Carry out pLPF technique on strains containing cassettes to excise the gentamicin resistance marker.
- Test antibiotic susceptibility using MIC tests without resistance markers present.
- Finish qPCR experiment and interpret results to better understand differences in my MIC results compared to the expected results.

References

Goswami, M., Mangoli, T. 2021. Investigation into the regulatory mechanisms of resistance-nodulation-diviion efflux pumps in *Acinetobacter spp.* Masters thesis, University of Manitoba, Manitoba, MB.

Acknowledgements

University of Manitoba
Undergraduate Research Award
NSERC