Flow Cytometry for Immunophenotyping of Lung Inflammation in a Pre-Clinical Murine Model of Asthma

Alaina Bagan1,3, Jignesh M. Vaghasiya1,3, Sujata Basu1,3, Andrew J. Halayko1-3

1Departments of Physiology & Pathophysiology and 2Internal Medicine, University of Manitoba, Winnipeg, MB and 3Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB.

Background

- Asthma is the third most common chronic disease in Canada, affecting 12% of Canadian children.
- For pre-clinical research, animal models reflecting key clinical features are needed for new therapeutic development.
- We proposed to optimize a protocol for efficient immunophenotype analysis using flow cytometry to assay immune cells in bronchoalveolar lavage fluid (BALF) and lung tissue using a murine model of allergic asthma.

Methods

- We used house dust mite (HDM)-challenged BALB/c mice (female, 8-10 weeks), randomized into groups (N=6): 2-weeks (5 days/week) challenge with HDM (25 ug, intranasal instillation) or saline (control).
- Individual BALF and lung samples were collected 48 hrs after final challenge and assessed by 5-colour immunophenotyping with an Attune-NxT flow cytometer.
- We used two antibody panels for cell specific markers: Granulocytes (eosinophils, neutrophils, alveolar and interstitial macrophages); or Lymphocytes (CD3+, CD4+, CD8+, and B cells).
- The % frequency of live cells for each cell sub-type was determined using FlowJo. Data, and analyzed by two-tailed t-test.

Results

Conclusions

Immunophenotyping by flow cytometry is an effective means of broadly and rapidly assessing immune cells in the mouse lung. Moreover, it discriminates the immune response to allergen challenge in lung tissue and the airway compartment, and offers excellent potential to discriminate cellular mechanisms for asthma pathobiology.