Introduction

Atomic Oxygen (AO) affects the optical properties of materials in space. Missions like OSIRIS-Rex are bringing asteroid samples back to Earth from space; these samples are going to change once they reach our atmosphere due to AO.

Objective

1. Determine the angle between the direction of motion (RAM) and the payload samples (always facing the Sun).
2. Determine the amount of expected AO.

Approach

1. Determine Sun vector, with no Earth tilt.
2. Determine Sun vector with Earth tilt included.
3. Include orbital orientation.
4. Determine AO flux on payload samples.

Results

Step 1 Assumptions:
- The Sun is a fixed point.
- Circular Earth orbit.

Step 2 Assumptions:
- The Earth’s tilt is 23.5°.

Step 3 Assumptions:
- The satellite’s orbital plane precesses due to the oblateness of the Earth.
- Orbital inclination: 51.6°.
- Altitude: 400 km.

Conclusion

The previous analysis used classical orbital mechanics to predict atomic oxygen exposure to the Iris payload.

While AO may pose a problem, it is only present less than a quarter of the year. With this information, colleagues at the University of Winnipeg, can now predict the optical changes caused by AO.

Acknowledgments

Stephanie Connell
Dr. Alfred Ng
Jaime Campos, Mitesh Patel, Nathan Wilson, Aayush Vij, and Riley Sweeney

References