Optimizing a panel for flow cytometry to determine ASA's mechanism of inhibition on the mTOR pathway.

Paula E Pidsadny¹, Monika M Kowatsch¹, Julie Lajoie^{1,2}, Keith R Fowke^{1,2,3}

¹University of Manitoba, ²University of Nairobi, ³Partners for Health and Development in Africa

INTRODUCTION

Figure 1. Graphic representation of immune quiescence. HIV replicates 1000 times more effectively in active CD4+ T cells than quiescent CD4+ T cells. mTOR induces inflammation and is involved in the activation quiescent cells. Acetylsalicylic acid (ASA) can inhibit mTOR, a potential method of inducing a quiescent phenotype.

- A quiescent phenotype is observed naturally in HIV-exposed seronegative (HESN) commercial sex workers in Nairobi, Kenya, who have lower levels of CD4+ T cell activation but can otherwise elicit a normal immune response.
- Previously, we found that found that low dose acetylsalicylic acid (ASA, brand name Aspirin) (81 mg/day) reduced HIV target cells in the female genital tract. This revealed ASA's potential in preventing HIV.

Figure 2. Graphic summary of ASA's inhibitory effect on the mTOR pathway. Orange – mTOR pathway stimuli, pink – upstream kinase, red – mTOR complex, light blue – ASA, purple – downstream effector protein, dark blue – cell functions regulated by mTOR.

 Here, we demonstrate that we have optimized a panel for flow cytometry that will allow us to determine ASA's effect on the mTOR pathway in CD4+ T cells.

OBJECTIVES & WORKFLOW

A Antibody Titration

Reduce background noise from non-specific staining

B Plate Staining Titration

• Reduce background noise from non-specific staining

C CD3CD28 Stimulation Titration

- Replace CD3/CD28 beads with pCD3^a and sCD28^b to improve efficiency
- Control ratio of pCD3^a to pCD28^b

D Volt Titration

 Determine ideal voltage before running experimental samples (data not shown)

Figure 3. Workflow of panel optimization including objectives of each step. ^a Plate-bound CD3. ^b Soluble CD28.

METHODS

- 1. PBMC^a stimulated with CD3/CD28 Dynabeads or pCD3^b and sCD28^c for 72 hours
- 2. PMBC^a were stained with intracellular and extracellular antibodies, and live/dead stain
- 3. PMBC^a were fixed and permeabilized
- 4. Data collected on the LSRFortessa cytometer
- 5. Data analyzed using FlowJo, graphs prepared in Excel

Figure 4. Overview of methods used to prepare cells for flow cytometry, data collection, and analysis. ^a Peripheral blood mononuclear cells. ^b Plate-bound CD3. ^c Soluble CD28.

RESULTS

Figure 6. Titration curves from extracellular plate staining titration. Master mix containing extracellular antibodies was titrated at different volumes. ^a Frequency of parent.

Figure 7. Titration curves from intracellular plate staining titration. Master mix containing intracellular antibodies was titrated at different volumes. ^a Frequency of parent. ^b histogram.

Condition	pCD3 ^f μg	sCD28 ^g μg	pCD3/sCD28
Beads ^c	N/A	N/A	N/A
1	0.2	0.025	8
2	0.1	0.025	4
3	0.067	0.025	2.68
4	0.05	0.025	2
5	0.2	0.02	10
6	0.1	0.02	5
7	0.067	0.02	3.35
8	0.05	0.02	2.5
9	0.2	0.013	15.385
10	0.1	0.013	7.692
11	0.067	0.013	5.154
12	0.05	0.013	3.846
13	0.2	0.01	20
14	0.1	0.01	10
15	0.067	0.01	6.7
16	0.05	0.01	<u> </u>
17	0.2	0.005	40
18	0.1	0.005	20
19	0.067	0.005	13.4
20	0.05	0.005	10
UN ^d	0	0	C
US ^e	0	0	C

Figure 8. Third CD3CD28 stimulation titration. CD3/CD28 Dynabeads were run beside different ratios of pCD3 and sCD8. (A) Titration curves. (B) Ratios of pCD3/pCD28 tested corresponding to conditions in the titration curves. ^a Frequency of parent. ^b histogram. ^cCD3/CD28 Dynabeads. ^dUnstimulated. ^eUnstained. ^fPlate-bound CD3. ^gSoluble CD28.

DISCUSSION

- 5 uL of PmTOR and 2 uL of PS6K were selected based off stain indices (Figure 5).
- 50 uL of extracellular master mix (Figure 6) and 75 uL of intracellular master mix (Figure 7) were selected based off titration curves.
- Condition 16 was selected for the low range and Condition 6 was selected for the high range pCD3 and sCD28 stimulation (Figure 8).
- Ideal voltages on the cytometer were selected to use during our study (data not shown).

CONCLUSION

- Optimization ensures the reliability and reproducibility of the experiment and reduces day to day variation during experimentation.
- We have optimized a panel for flow cytometry to determine ASA's mechanism of inhibition on the mTOR pathway in CD4+ T cells.

SIGNIFICANCE

• Determining ASA's mechanism of inhibition on the mTOR pathway will provide more insight into how ASA induces a quiescent phenotype in the female genital tract.

REFERENECES

Laplante, M., and D. M. Sabatini. 2009. mTOR signaling at a glance. J. Cell Sci. 122: 3589–3594.

Lajoie, J., K. Birse, L. Mwangi, Y. Chen, J. Cheruiyot, M. Akolo, J. Mungai, G. Boily-Larouche, L. Romas, S. Mutch, M. Kimani, J. Oyugi, E. A. Ho, A. Burgener, J. Kimani, and K. R. Fowke. 2018. Using safe, affordable and accessible non-steroidal anti-inflammatory drugs to reduce the number of HIV target cells in the blood and at the female genital tract. *J. Int. AIDS Soc.* 21.

McLaren, P. J., T. B. Ball, C. Wachihi, W. Jaoko, D. J. Kelvin, A. Danesh, J. Kimani, F. A. Plummer, and K. R. Fowke. 2010. HIV-Exposed Seronegative Commercial Sex Workers Show a Quiescent Phenotype in the CD4 + T Cell

Infect. Dis. 202: S339—S344.

Din, Farhat, V. N., A. Valanciute, V. P. Houde, D. Zibrova, K. A. Green, K. Sakamoto, D. R. Alessi, and M. G. Dunlop. 2012. Aspirin Inhibits mTOR Signaling, Activates AMP-Activated Protein Kinase, and Induces Autophagy in

Colorectal Cancer Cells. Gastroenterology 142: 1504–15.e3.

Compartment and Reduced Expression of HIV-Dependent Host Factors . J.

ACKNOWLEDGEMENTS

Fowke Lab Members

• Participants

